Immunogenicity and tolerogenicity of self-major histocompatibility complex peptides.

Author:

Benichou G1,Takizawa P A1,Ho P T1,Killion C C1,Olson C A1,McMillan M1,Sercarz E E1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.

Abstract

Mechanisms involved in self-antigen processing and presentation are crucial in understanding the induction of self-tolerance in the thymus. We examined the immunogenicity of determinants from major histocompatibility complex (MHC) molecules that are expressed in the thymus and have tested peptides derived from the polymorphic regions of class I and class II molecules. We found that two peptides corresponding to NH2 termini of the class II alpha and beta chains (Ak alpha 1-18 and Ak beta 1-16) could bind to self-Ak molecules with high affinity and, surprisingly, were immunogenic in that they could elicit strong proliferative T cell responses in B10.A mice (Ak, Ek). Neonatal injection of peptide Ak beta 1-16 resulted in complete unresponsiveness to this peptide at 8 wk of age showing that these T cells were susceptible to tolerance induction. We have also tested certain class I MHC peptides and showed that some can interact efficiently with class II MHC peptides to induce an autoreactive T cell proliferative response. Among these class I peptides is one (Dd 61-85) that has the capacity to bind to self-Ia without being immunogenic, and therefore represents an MHC determinant that had induced thymic self-tolerance. We conclude that some self-MHC molecules can be processed into peptides that can be presented in the context of intact class II molecules at the surface of antigen-presenting cells. Autoreactive T cells recognizing optimally processed self-peptide/MHC complexes are eliminated during development, whereas other potentially autoreactive T cells escape clonal inactivation or deletion. Incomplete tolerance to self-antigens enriches the T cell repertoire despite the fact that such T cells may eventually become involved in autoimmune disease.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3