The presumptive CDR3 regions of both T cell receptor alpha and beta chains determine T cell specificity for myoglobin peptides.

Author:

Danska J S1,Livingstone A M1,Paragas V1,Ishihara T1,Fathman C G1

Affiliation:

1. Department of Medicine, Stanford University School of Medicine, California 94305.

Abstract

The T cell receptor alpha/beta (TCR-alpha/beta) is encoded by variable (V), diversity (D), joining (J), and constant (C) segments assembled by recombination during thymocyte maturation to produce a heterodimer that imparts antigenic specificity to the T cell. Unlike immunoglobulins (Igs), which bind free antigen, the ligands of TCR-alpha/beta are cell surface complexes of intracellularly degraded antigens (i.e., peptides) bound to and presented by polymorphic products of the major histocompatibility complex (MHC). Therefore, antigen recognition by T cells is defined as MHC restricted. A model has been formulated based upon the similarity between TCR-alpha/beta V region and Ig Fab amino acid sequences, and the crystal structure of the MHC class I and Ig molecules. This model predicts that the complementarity determining regions (CDR) 1 and 2, composed of TCR V alpha and V beta segments, primarily contact residues of the MHC alpha helices, whereas V/J alpha and V/D/J beta junctional regions (the CDR3 equivalent) contact the peptide in the MHC binding groove. Because polymorphism in MHC proteins is limited relative to the enormous diversity of antigenic peptides, the TCR may have evolved to position the highly diverse junctional residues (CDR3), where they have maximal contact with antigen bound in the MHC peptide groove. Here, we demonstrate a definitive association between CDR3 sequences in both TCR alpha and beta chains, and differences in recognition of antigen fine specificity using a panel of I-Ed-restricted, myoglobin-reactive T cell clones. Acquisition of these data relied in part upon a modification of the polymerase chain reaction that uses a degenerate, consensus primer to amplify TCR alpha chains without foreknowledge of the V alpha segments they utilize.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3