Effector cells in allelic H-2 class I-incompatible skin graft rejection.

Author:

Ichikawa T1,Nakayama E1,Uenaka A1,Monden M1,Mori T1

Affiliation:

1. Department of Tumor Immunology, Center for Adult Diseases, Osaka, Japan.

Abstract

The cellular mechanisms of skin graft rejection with allelic H-2 class I differences were studied by examining the effect on graft survival of in vivo administration of anti-Lyt-2.2 mAb, anti-L3T4 mAb, or both to recipient mice. The injections of anti-Lyt-2.2 mAb and anti-L3T4 mAb caused selective depletions of Lyt-2+ cells and L3T4+ cells, respectively. Injection of anti-Lyt-2.2 mAb significantly prolonged graft survival in 7 of 12 combinations of H-2D-end difference, but did not prolong graft survival in 5 other combinations of H-2D-end difference, or in 2 combinations of H-2K-end difference. Injection of anti-L3T4 mAb did not prolong graft survival in any combinations with class I difference tested. Injection of anti-L3T4 mAb plus anti-Lyt-2.2 mAb markedly prolonged graft survival in the combinations with class I difference in which anti-Lyt-2.2 mAb had no effect and overcame the effect of anti-Lyt-2.2 mAb in those in which anti-Lyt-2.2 mAb had an effect in prolonging graft survival. These results indicated that in combinations in which anti-Lyt-2.2 mAb did not prolong graft survival, class I antigen stimulated L3T4+ effector cells when Lyt-2+ cells were blocked and Lyt-2+ effector cells when L3T4+ cells were blocked. On the other hand, in the combinations in which anti-Lyt-2.2 mAb prolong graft survival, these antigens initially caused preferential stimulation of Lyt-2+ but not L3T4+ effector cells, although delayed activation of L3T4+ effector cells occurred when Lyt-2+ cells were blocked. Furthermore, a significant correlation was found between the effect of anti-Lyt-2.2 mAb in prolonging graft survival and the failure of recipient mice to produce H-2 antibody. These results can be taken as evidence that L3T4+ effector cells are not involved in the initial phase of graft rejection in these combinations.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3