Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates.

Author:

Murray H W,Juangbhanich C W,Nathan C F,Cohn Z A

Abstract

The capacity of three populations of mouse peritoneal macrophages to generate oxidative metabolites (as judged by extracellular release of H2O2) was compared to their ability to influence the intracellular fate of virulent Toxoplasma gondii. Macrophages from normal mice released little H2O2 and allowed unrestricted multiplication of intracellular toxoplasmas. Cells from chronically infected, immune (IM) mice released 4 times more H2O2 and displayed microbistatic activity. In contrast, macrophages from immune-boosted (IB) mice released 25 times more H2O2 than normal cells and rapidly killed the bulk of ingested toxoplasmas within 1 h. When macrophage monolayers were exposed to scavengers of O2-, H2O2, OH., and 1O2, both the inhibition of intracellular toxoplasma multiplication by IM macrophages and the killing of toxoplasmas by IB macrophages were reversed. Depriving cells of glucose, which markedly reduced H2O2 release, resulted in similar reversal of IM and IB macrophage anti-toxoplasma activity. As judged by the effect of the individual oxygen intermediate scavengers, O2- and H2O2 appeared to serve as precursors for the key toxic agents which may include OH. and 1O2. Providing normal macrophages with an exogenous source of oxidative metabolites generated by xanthine and xanthine oxidase, but not glucose and glucose oxidase, resulted in inhibition of intracellular toxoplasma growth. These findings suggest the presence of an oxygen-dependent antimicrobial system in mononuclear phagocytes beyond the production of O2- and H2O2, and indicate an important role for oxygen intermediates in macrophage resistance to the intracellular pathogen T. gondii.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 208 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3