Surface-associated heparin inhibits zymosan-induced activation of the human alternative complement pathway by augmenting the regulatory action of the control proteins on particle-bound C3b.

Author:

Kazatchkine M D,Fearon D T,Silbert J E,Austen K F

Abstract

Discrimination by the human alternative pathway between activating and nonactivating particles occurs after deposition of C3b by the continuous low-grade interaction of the alternative pathway components in biologic fluids and is dependent on the modulation by surface constituents of the interaction of bound C3b with the control proteins, beta 1H, and C3b inactivator (C3bINA). When heparin glycosaminoglycan was coupled to activating particles, such as zymosan or Sepharose, by cyanogen bromide activation, their capacity to activate the human alternative pathway was inhibited. The loss of alternative pathway-activating capacity was directly correlated to the number of heparin molecules bound/zymosan particle, whether the ratio was varied by increasing the amounts of heparin in the initial coupling reactions or by treating a fully inhibited particle with incremental concentrations of heparinase. Analysis by linear regression of the inhibitory effect of each procedure (r = 0.97, r = 0.98, respectively) for adjusting the number of heparin molecules/particle revealed that the dose-response relationships were identical and that complete inhibition occurred with greater than 12 X 10(8) molecules of heparin/zymosan particle. The coupling of heparin to zymosan did not impair the uptake of C3b from the fluid-phase interaction of C3, B, and D, and did not alter the capacity of bound C3b to associate with B so as to permit its inactivation by D. Although the regulatory proteins present in normal serum chelated with EDTA or presented as a combination of purified C3bINA and beta 1H were relatively inefficient in inactivating C3b function on an activating particle of the alternative pathway such as zymosan or zymosan-cyanogen bromide, the control proteins rapidly inactivated C3b on a nonactivating particle wuch as a sheep erythrocyte or zymosan with coupled heparin. The increased numbers of C3b sites susceptible to inactivation by C3bINA in the presence of beta 1H were significantly correlated to the number of molecules of heparin/particle. By linear regression analysis of the correlation (r = 0.99) the number of heparin molecules/particle required to promote total inactivation of bound C3b by purified control proteins was 13.8 X 10(6). This molecular analysis suggests that the action of heparin coupled to an activating particle of the alternative pathway is to promote the interaction between particle-bound C3b and the regulatory proteins, thereby preventing particle-associated amplified C3 cleavage. It is noteworthy that both surface constituents known to maintain a particle as a nonactivator of the alternative pathway, sialic acid and N-sulfated mucopolysaccharide, act by facilitating the inactivation by regulatory proteins of the function of particle-bound C3b.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3