Rejection of first-set skin allografts in man. the microvasculature is the critical target of the immune response.

Author:

Dvorak H F,Mihm M C,Dvorak A M,Barnes B A,Manseau E J,Galli S J

Abstract

Recent reports of microvascular injury in delayed hypersensitivity skin reactions prompted us to reexamine the pathogenesis of first-set skin allograft rejection in man using morphologic techniques that allowed both extensive vessel sampling and unequivocal evaluation of microvascular endothelium. We here report that widespread microvascular damage is a characteristic, early consequence of the cellular immune response to first-set human skin allografts and is qualitatively similar to, but substantially more extensive than, that occurring in delayed hypersensitivity reactions. Microvascular damage in invariably preceded significant epithelial necrosis and affected initially and primarily those venules, arterioles, and small veins enveloped by lymphocytes. Vessels of both the allograft itself and the underlying graft bed (recipient tissue) were equally affected. These data suggest that endothelial cells of the microvasculature are the critical target of the immune response in first-set vascularized skin allograft rejection in man and that rejection can be attributed largely to ischemic infarction resulting from extensive microvascular damage. Other mechanisms, such as direct cellular contacts between infiltrating lymphocytes and epithelium, apparently played only a minor role. The findings presented here indicate that the rejection of first-set vascularized skin allografts, though induced by immunologically specific mechanisms, is primarily effected by final pathways that are relatively nonspecific and that may cause damage to both foreign and host vessels and cells. Rather than contradicting studies demonstrating the exquisite specificity of allograft rejection in other systems, these findings provide a further example of the heterogeneity of the cellular immune response. Recognition of the critical role of immunologically mediated microvascular injury may prove important both for an understanding of the biology of allograft rejection and for strategies aimed at prolonging allograft survival.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3