An autosomal dominant locus, Nka, mapping to the Ly-49 region of a rat natural killer (NK) gene complex, controls NK cell lysis of allogeneic lymphocytes.

Author:

Dissen E1,Ryan J C1,Seaman W E1,Fossum S1

Affiliation:

1. Department of Anatomy, University of Oslo, Norway.

Abstract

Natural Killer (NK) cells can recognize and kill MHC-incompatible normal bone marrow-derived cells. Presently characterized MHC-binding receptors on NK cells, including the Ly-49 family in the mouse, transmit inhibitory signals upon binding to cognate class I MHC ligands. Here we study in vivo NK-mediated lysis of normal allogeneic lymphocytes in crosses between alloreactivity-competent PVG rats and alloreactivity-deficient DA rats. NK cells from both strains are able to lyse standard tumor targets. We identify an autosomal dominant locus, Nka, that controls NK-mediated alloreactivity. Individuals carrying the dominant PVG allele in single dose were fully competent in eliminating allogeneic target cells, suggesting that Nka encodes or regulates a gene product inducing or activating alloreactivity. By linkage analysis and pulsed field gel electrophoresis, a natural killer gene complex (NKC) on rat chromosome 4 is described that contains the rat NKR-P1 and Ly-49 multigene families plus a rat NKG2D homologue. Nka maps within the NKC, together with the most telomeric Ly-49 family members, but separate from NKG2D and the NKR-P1 family. The Nka-encoded response, moreover, correlates with the expression of transcripts for Ly-49 receptors in NK cell populations, as Northern blot analysis demonstrated low expression of Ly-49 genes in DA NK cells, in contrast to high expression in alloreactivity-competent PVG, (DA X PVG)F1, and PVG.1AVI NK cells. The low Ly-49 expression in DA is not induced by MHC haplotype, as demonstrated by high expression of Ly-49 in the DA MHC-congenic PVG.1AVI strain. Finally, we have cloned and characterized the first four members of the rat Ly-49 gene family. Their cytoplasmic domains demonstrate substantial heterogeneity, consistent with the hypothesis that different Ly-49 family members may subserve different signaling functions.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3