Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice.

Author:

Carrera L1,Gazzinelli R T1,Badolato R1,Hieny S1,Muller W1,Kuhn R1,Sacks D L1

Affiliation:

1. Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

Leishmania major promastigotes were found to avoid activation of mouse bone marrow-derived macrophages (BMM0) in vitro for production of cytokines that are typically induced during infection with other intracellular pathogens. Coexposure of BMM0 to the parasite and other microbial stimuli resulted in complete inhibition of interleukin (IL) 12 (p40) mRNA induction and IL-12 release. In contrast, mRNA and protein levels for IL-1(alpha), IL-1(beta), tumor necrosis factor (TNF) alpha, and inducible NO synthase (iNOS) were only partially reduced, and signals for IL-10 and monocyte chemoattractant protein (MCP-1/JE) were enhanced. The parasite could provide a detectable trigger for TNF-alpha and iNOS in BMM0 primed with interferon (IFN) gamma, but still failed to induce IL-12. Thus IL-12 induction is selectively impaired after infection, whereas activation pathways for other monokine responses remain relatively intact. Selective and complete inhibition of IL-12(p40) induction was observed using BMM0 from either genetically susceptible or resistant mouse strains, as well as IL-10 knockout mice, and was obtained using promastigotes from cutaneous, visceral, and lipophosphoglycan-deficient strains of Leishmania. The impaired production of the major physiological inducer of IFN-gamma is suggested to underlie the relatively prolonged interval of parasite intracellular survival and replication that is typically associate with leishmanial infections, including those producing self-limiting disease.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3