Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes.

Author:

Tian J1,Atkinson M A1,Clare-Salzler M1,Herschenfeld A1,Forsthuber T1,Lehmann P V1,Kaufman D L1

Affiliation:

1. Department of Molecular and Medical Pharmacology, University of California, Los Angeles 90095-1735, USA.

Abstract

We previously demonstrated that a spontaneous Th1 response against glutamate decarboxylase (GAD65) arises in NOD mice at four weeks in age and subsequently T cell autoimmunity spreads both intramolecularly and intermolecularly. Induction of passive tolerance to GAD65, through inactivation of reactive T cells before the onset of autoimmunity, prevented determinant spreading and the development of insulin-dependent diabetes mellitus (IDDM). Here, we examined whether an alternative strategy, designed to induce active tolerance via the engagement of Th2 immune responses to GAD65, before the spontaneous onset of autoimmunity, could inhibit the cascade of Th1 responses that lead to IDDM. We observed that a single intranasal administration of GAD65 peptides to 2-3-wk-old NOD mice induced high levels of IgG1 antibodies to GAD65. GAD65 peptide treated mice displayed greatly reduced IFN gamma responses and increased IL-5 responses to GAD65, confirming the diversion of the spontaneous GAD65 Th1 response toward a Th2 phenotype. Consistent with the induction of an active tolerance mechanism, splenic CD4+ (but not CD8+) T cells from GAD65 peptide-treated mice, inhibited the adoptive transfer of IDDM to NOD-scid/scid mice. This active mechanism not only inhibited the development of proliferative T cell responses to GAD65, it also limited the expansion of autoreactive T cell responses to other beta cell antigens (i.e., determinant spreading). Finally, GAD65 peptide treatment reduced insulitis and long-term IDDM incidence. Collectively, these data suggest that the nasal administration of GAD65 peptides induces a Th2 cell response that inhibits the spontaneous development of autoreactive Th1 responses and the progression of beta cell autoimmunity in NOD mice.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3