Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall.

Author:

Gobin J1,Horwitz M A1

Affiliation:

1. Department of Medicine, School of Medicine, University of California, Los Angeles 90095, USA.

Abstract

To multiply and cause disease in the host, Mycobacterium tuberculosis must acquire iron from the extracellular environment at sites of replication. To do so, the bacterium releases high-affinity iron-binding siderophores called exochelins. In previous studies, we have described the purification and characterization of the exochelin family of molecules. These molecules share a common core structure with another type of high-affinity iron-binding molecule located in the cell wall of M. tuberculosis: the mycobactins. The water-soluble exochelins differ from each other and from water insoluble mycobactins in polarity, which is dependent primarily upon the length and modifications of an alkyl side chain. In this study, we have investigated the capacity of purified exochelins to remove iron from host high-affinity iron-binding molecules, and to transfer iron to mycobactins. Purified desferri-exochelins rapidly removed iron from human transferrin, whether it was 95 or 40% iron saturated, its approximate percent saturation in human serum, and from human lactoferrin. Desferri-exochelins also removed iron, but at a slower rate, from the iron storage protein ferritin. Purified ferri-exochelins, but not iron transferrin, transferred iron to desferri-mycobactins in the cell wall of live bacteria. To explore the possibility that the transfer iron from exochelins to mycobactins was influenced by their polarity, we investigated the influence of polarity on the iron affinity of exochelins. Exochelins of different polarity exchanged iron equally with each other. This study supports the concept that exochelins acquire iron for M. tuberculosis by removing this element from host iron-binding proteins and transferring it to desferri-mycobactins in the cell wall of the bacterium. The finding that ferri-exochelins but not iron transferrin transfer iron to mycobactins in the cell wall underscores the importance of exochelins in iron acquisition. This study also shows that the variable alkyl side chain on the core structure of exochelins and mycobactins, the principal determinant of their polarity, has little or no influence on their iron affinity.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3