Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus.

Author:

Kaliyaperumal A1,Mohan C1,Wu W1,Datta S K1

Affiliation:

1. Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA.

Abstract

Nucleosome-specific T helper (Th) cells provide major histocompatibility complex class II-restricted, cognate help to nephritogenic antinuclear autoantibody-producing B cells in lupus. However, the lupus Th cells do not respond when components of the nucleosome, such as free DNA or histones, are individually presented by antigen-presenting cells. Thus critical peptide epitopes for the pathogenic Th cells are probably protected during uptake and processing of the native nucleosome particle as a whole. Therefore, herein we tested 145 overlapping peptides spanning all four core histones in the nucleosome. We localized three regions in core histones, one in H2B at amino acid position 10-33 (H2B(10-33)), and two in H4, at position 16-39 (H4(16-39)) and position 71-94 (H4(71-94)), that contained the peptide epitopes recognized by the pathogenic autoantibody-inducing Th cells of lupus. The peptide autoepitopes also triggered the pathogenic Th cells of (SWR x NZB)F1 lupus mice in vivo to induce the development of severe lupus nephritis. The nucleosomal autoepitopes stimulated the production of Th1-type cytokines, consistent with immunoglobulin IgG2a, IgG2b, and IgG3 being the isotypes of nephritogenic autoantibodies induced in the lupus mice. Interestingly, the Th cell epitopes overlapped with regions in histones that contain B cell epitopes targeted by autoantibodies, as well as the sites where histones contact with DNA in the nucleosome. Identification of the disease-relevant autoepitopes in nucleosomes will help in understanding how the pathogenic Th cells of spontaneous systemic lupus erythematosus emerge, and potentially lead to the development of peptide-based tolerogenic therapy for this major autoimmune disease.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3