In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction.

Author:

Candotti F1,Oakes S A1,Johnston J A1,Notarangelo L D1,O'Shea J J1,Blaese R M1

Affiliation:

1. Clinical Gene Therapy Branch, National Center for Human Genome Research, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

Mutations affecting the expression of the Janus family kinase JAK3 were recently shown to be responsible for autosomal recessive severe combined immunodeficiency (SCID). JAK3-deficient patients present with a clinical phenotype virtually indistinguishable from boys affected by X-linked SCID, a disease caused by genetic defects of the common gamma chain (gamma c) that is a shared component of the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15. The specific interaction of JAK3 and gamma c represents the biochemical basis for the similarities between these two immunodeficiencies. Both forms of SCID are characterized by recurrent, severe infections leading to death in infancy unless successfully treated by allogeneic bone marrow transplantation. Because of the potentially lethal complications associated with allogeneic bone marrow transplantation and the frequent lack of suitable marrow donors, the development of alternative forms of therapy is highly desirable. To this end, we investigated a retroviral-mediated gene correction approach for JAK3-deficiency. A vector carrying a copy of JAK3 cDNA was constructed and used to transduce B cell lines derived from patients with JAK3-deficient SCID. We demonstrate restoration of JAK3 expression and phosphorylation upon IL-2 and IL-4 stimulation. Furthermore, patients' cells transduced with JAK3 acquired the ability to proliferate normally in response to IL-2. These data indicate that the biological defects of JAK3-deficient cells can be efficiently corrected in vitro by retroviral-mediated gene transfer, thus providing the basis for future investigation of gene therapy as treatment for JAK3-deficient SCID.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3