Endogenous altered peptide ligands can affect peripheral T cell responses.

Author:

Vidal K1,Hsu B L1,Williams C B1,Allen P M1

Affiliation:

1. Center for Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.

Abstract

T cells potentially encounter a large number of endogenous self-peptide/MHC ligands in the thymus and the periphery. These endogenous ligands are critical to both positive and negative selection in the thymus; however, their effect on peripheral T cells has not been directly ascertained. Using the murine allelic Hbd (64-76)/I-Ek self-antigen model, we have previously identified altered peptide ligands (APLs) which are able to stimulate some but not all TCR-mediated effector functions. To determine directly the effect of endogenously synthesized APL/MHC complexes on peripheral T cells, we used a TCR transgenic mouse which had reversed our normal antigen system, with Ser69 peptide now being the agonist and Hbd(64-76) being the APL. In this report, we show that the constitutive level of endogenous Hbd(64-76)/I-Ek complexes presented by APCs in vivo is too low to affect the response of Ser69 reactive T cells. However, by increasing the number of Hbd(64-76)/I-Ek complexes expressed by the APCs, TCR antagonism is observed for both primary T cells and T cell hybridomas. In addition, the level of the CD4 coreceptor expressed on T cells and T cell hybridomas. In addition, the level of the CD4 coreceptor expressed on T cells changes the response pattern to endogenously presented Hbd(64-76)/I-Ek ligand. These findings demonstrate that T cells are selected to ignore the constitutive levels of endogenous complexes they encounter in the periphery. T cell responses can be affected by endogenous APLs in the periphery under limited but attainable circumstances which change the efficacy of the TCR/ligand interaction. Thus, endogenous APLs play a role in both the selection of T cells in the thymus and the responses of peripheral T cells.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3