MACROPHAGE-MELANOCYTE HETEROKARYONS

Author:

Gordon Saimon1,Cohn Zanvil1

Affiliation:

1. From The Rockefeller University, New York 10021

Abstract

High yields of mouse macrophage-melanocyte heterokaryons and macrophage-macrophage homokaryons were obtained through the virus-induced fusion of cells spread on a glass surface. After fusion there was a striking reorganization of cellular architecture by means of a colcemid-sensitive process. Heterokaryons were isolated through the use of differential trypsinization and many underwent division to form melanocyte-like hybrids. The selective uptake of dextran sulfate by macrophages served as a useful cytoplasmic marker in identifying hybrids. Many characteristic macrophage properties were altered in the heterokaryons. Within an hour of fusion macrophage nuclei became swollen, nucleoli were more prominent, and increased nuclear RNA synthesis occurred. 3 hr after fusion, a wave of DNA synthesis took place in the previously dormant macrophage nuclei. The fate of typical macrophage markers was examined in both heterokaryons and homokaryons. Macrophage homokaryons continued to exhibit active phagocytosis of sensitized erythrocytes, whereas this capacity was lost irreversibly in heterokaryons. The loss of phagocytic activity of heterokaryons occurred at an exponential rate and was accelerated by high concentrations of calf serum. Another macrophage surface marker, a divalent cation-dependent adenosine triphosphatase (ATPase), could be demonstrated histochemically on heterokaryons. Shortly after fusion, it was present in discrete regions, but it became more diffuse and disappeared within a day. Acid phosphatase-positive secondary lysosomes and retractile lipid droplets disappeared from heterokaryons but continued to accumulate in macrophage homokaryons. These observations indicate that typical macrophage properties cease to be expressed in heterokaryons, and melanocyte functions presumably predominate in heterokaryons and hybrids.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3