Memory/effector (CD45RBlo) CD4 T cells are controlled directly by IL-10 and cause IL-22–dependent intestinal pathology

Author:

Kamanaka Masahito1,Huber Samuel12,Zenewicz Lauren A.1,Gagliani Nicola1,Rathinam Chozhavendan1,O'Connor William1,Wan Yisong Y.33,Nakae Susumu4,Iwakura Yoichiro4,Hao Liming1,Flavell Richard A.11

Affiliation:

1. Department of Immunobiology, Department of Pathology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT 06520

2. I. Medizinische Klinik, Universitätsklinik Hamburg-Eppendorf, 20246 Hamburg, Germany

3. Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

4. Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan

Abstract

The role of direct IL-10 signaling in different T cell subsets is not well understood. To address this, we generated transgenic mice expressing a dominant-negative IL-10 receptor specifically in T cells (CD4dnIL-10Rα). We found that Foxp3-depleted CD45RBlo (regulatory T cell [Treg cell]–depleted CD45RBlo) but not CD45RBhi CD4+ T cells are controlled directly by IL-10 upon transfer into Rag1 knockout (KO) mice. Furthermore, the colitis induced by transfer of Treg cell–depleted CD45RBlo CD4+ T cells into Rag1 KO mice was characterized by reduced Th1 and increased Th17 cytokine messenger RNA levels in the colon as compared with the colitis induced by transfer of CD45RBhi T cells. In contrast to the CD45RBhi transfer colitis model, in which IL-22 is protective, we found that T cell–derived IL-22 was pathogenic upon transfer of Treg cell–depleted CD45RBlo T cells into Rag1 KO mice. Our results highlight characteristic differences between colitis induced by naive (CD45RBhi) and memory/effector (Treg cell–depleted CD45RBlo) cells and different ways that IL-22 impacts inflammatory bowel disease.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3