Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase

Author:

Ewald Sarah E.1,Engel Alex1,Lee Jiyoun22,Wang Miqi1,Bogyo Matthew22,Barton Gregory M.1

Affiliation:

1. Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720

2. Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305

Abstract

Toll-like receptor (TLR) 9 requires proteolytic processing in the endolysosome to initiate signaling in response to DNA. However, recent studies conflict as to which proteases are required for receptor cleavage. We show that TLR9 proteolysis is a multistep process. The first step removes the majority of the ectodomain and can be performed by asparagine endopeptidase (AEP) or cathepsin family members. This initial cleavage event is followed by a trimming event that is solely cathepsin mediated and required for optimal receptor signaling. This dual requirement for AEP and cathepsins is observed in all cell types that we have analyzed, including mouse macrophages and dendritic cells. In addition, we show that TLR7 and TLR3 are processed in an analogous manner. These results define the core proteolytic steps required for TLR9 function and suggest that receptor proteolysis may represent a general regulatory strategy for all TLRs involved in nucleic acid recognition.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 258 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3