Cytomegalovirus immunoevasin reveals the physiological role of “missing self” recognition in natural killer cell dependent virus control in vivo

Author:

Babić Marina1,Pyzik Michal2,Zafirova Biljana1,Mitrović Maja1,Butorac Višnja1,Lanier Lewis L.3,Krmpotić Astrid1,Vidal Silvia M.2,Jonjić Stipan1

Affiliation:

1. Department of Histology and Embryology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia

2. Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada

3. Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94115

Abstract

Cytomegaloviruses (CMVs) are renowned for interfering with the immune system of their hosts. To sidestep antigen presentation and destruction by CD8+ T cells, these viruses reduce expression of major histocompatibility complex class I (MHC I) molecules. However, this process sensitizes the virus-infected cells to natural killer (NK) cell–mediated killing via the “missing self” axis. Mouse cytomegalovirus (MCMV) uses m152 and m06 encoded proteins to inhibit surface expression of MHC I molecules. In addition, it encodes another protein, m04, which forms complexes with MHC I and escorts them to the cell surface. This mechanism is believed to prevent NK cell activation and killing by restoring the “self” signature and allowing the engagement of inhibitory Ly49 receptors on NK cells. Here we show that MCMV lacking m04 was attenuated in an NK cell– and MHC I–dependent manner. NK cell–mediated control of the infection was dependent on the presence of NK cell subsets expressing different inhibitory Ly49 receptors. In addition to providing evidence for immunoevasion strategies used by CMVs to avoid NK cell control via the missing-self pathway, our study is the first to demonstrate that missing self–dependent NK cell activation is biologically relevant in the protection against viral infection in vivo.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3