INHIBITION OF INFLUENZA VIRUS MULTIPLICATION BY N-GLYCOSIDES OF BENZIMIDAZOLES

Author:

Tamm Igor1,Folkers Karl1,Shunk Clifford H.1,Horsfall Frank L.1

Affiliation:

1. From the Hospital of The Rockefeller Institute for Medical Research, New York, and The Research Laboratories of Merck & Company, Inc., Rahway, New Jersey

Abstract

Chloro derivatives of benzimidazole were found to be 2 to 3 times more active than corresponding methyl derivatives in causing inhibition of Lee virus multiplication in chorioallantoic membrane cultures in vitro. The most active benzimidazole derivative thus far tested is 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB); it caused 75 per cent inhibition of Lee virus multiplication in membrane cultures at a concentration of 0.38 x 10–4 M. On the other hand, 5,6-dimethyl-1-alpha;-D-ribofuranosylbenzimidazole, the moiety present in vitamin B12, failed to inhibit Lee virus multiplication at a concentration of 35 x 10–4 M. Other N-glycosides of 5,6-dichlorobenzimidazole were considerably less active than DRB. In single cycle experiments, the degree of inhibition of Lee virus multiplication by DRB in membrane cultures was not dependent on the amount of virus in the inoculum. This compound did not inactivate the infectivity of extracellular Lee virus, had no effect on virus-erythrocyte interaction, did not interfere with the adsorption of the virus by the host tissue, nor affect the release of newly formed virus from the membrane. The inhibitory effect of DRB on Lee virus multiplication, in contrast to that of 2,5-dimethylbenzimidazole, persisted after transfer of infected membranes into fresh culture medium not containing the compound. Both DRB and the 2,5-dimethyl compound caused 99 per cent inhibition of Lee virus multiplication without affecting oxygen uptake of the membrane. Tissue proliferation of membrane pieces in roller tube culture was not significantly affected by DRB at inhibitory concentration, whereas at equivalent concentration the 2,5-dimethyl compound did restrict cellular growth. At higher concentrations, both compounds caused retardation of cell proliferation. This effect was reversible on removal of either compound from the medium. The multiplication of several strains of influenza A and B viruses, i.e. Lee, MB, PR8, and FM1, was inhibited to the same degree by each of the two compounds; DRB was 35 times more active than the 2,5-dimethyl compound relative to each of the strains. DRB caused inhibition of Lee virus multiplication in intact embryonated chicken eggs and in mice without causing significant signs of toxicity in either host. Some of the implications of these findings are discussed in relation to the mechanism of the inhibition of influenza virus multiplication.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3