Src Homology 2–containing 5-Inositol Phosphatase (SHIP) Suppresses an Early Stage of Lymphoid Cell Development through Elevated Interleukin-6 Production by Myeloid Cells in Bone Marrow

Author:

Nakamura Koji1,Kouro Taku1,Kincade Paul W.12,Malykhin Alexander1,Maeda Kazuhiko1,Coggeshall K. Mark123

Affiliation:

1. Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104

2. Department of Microbiology and Immunology, University of Oklahoma, Oklahoma City, OK 73104

3. Department of Cell Biology, University of Oklahoma, Oklahoma City, OK 73104

Abstract

The Src homology (SH)2–containing inositol 5-phosphatase (SHIP) negatively regulates a variety of immune responses through inhibitory immune receptors. In SHIP−/− animals, we found that the number of early lymphoid progenitors in the bone marrow was significantly reduced and accompanied by expansion of myeloid cells. We exploited an in vitro system using hematopoietic progenitors that reproduced the in vivo phenotype of SHIP−/− mice. Lineage-negative marrow (Lin−) cells isolated from wild-type mice failed to differentiate into B cells when cocultured with those of SHIP−/− mice. Furthermore, culture supernatants of SHIP−/− Lin− cells suppressed the B lineage expansion of wild-type lineage-negative cells, suggesting the presence of a suppressive cytokine. SHIP−/− Lin− cells contained more IL-6 transcripts than wild-type Lin− cells, and neutralizing anti–IL-6 antibody rescued the B lineage expansion suppressed by the supernatants of SHIP−/− Lin− cells. Finally, we found that addition of recombinant IL-6 to cultures of wild-type Lin− bone marrow cells reproduced the phenotype of SHIP−/− bone marrow cultures: suppression of B cell development and expansion of myeloid cells. The results identify IL-6 as an important regulatory cytokine that can suppress B lineage differentiation and drive excessive myeloid development in bone marrow.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3