Structural Basis of Cytochrome c Presentation by IEk

Author:

Fremont Daved H.1,Dai Shaodong2,Chiang Herbert1,Crawford Frances2,Marrack Philippa234,Kappler John235

Affiliation:

1. Department of Pathology and Immunology and Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110

2. Howard Hughes Medical Institute, Integrated Department of Immunology, Zuckerman Family/Canyon Ranch Crystallography Laboratory, National Jewish Medical and Research Center, Denver, CO 80206

3. Integrated Department of Immunology, University of Colorado Health Science Center, Denver, CO 80262

4. Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center, Denver, CO 80262

5. Department of Pharmacology and Program in Biomolecular Structure, University of Colorado Health Science Center, Denver, CO 80262

Abstract

The COOH-terminal peptides of pigeon and moth cytochrome c, bound to mouse IEk, are two of the most thoroughly studied T cell antigens. We have solved the crystal structures of the moth peptide and a weak agonist–antagonist variant of the pigeon peptide bound to IEk. The moth peptide and all other peptides whose structures have been solved bound to IEk, have a lysine filling the p9 pocket of IEk. However, the pigeon peptide has an alanine at p9 shifting the lysine to p10. Rather than kinking to place the lysine in the anchor pocket, the pigeon peptide takes the extended course through the binding groove, which is characteristic of all other peptides bound to major histocompatibility complex (MHC) class II. Thus, unlike MHC class I, in which peptides often kink to place optimally anchoring side chains, MHC class II imposes an extended peptide conformation even at the cost of a highly conserved anchor residue. The substitution of Ser for Thr at p8 in the variant pigeon peptide induces no detectable surface change other than the loss of the side chain methyl group, despite the dramatic change in recognition by T cells. Finally, these structures can be used to interpret the many published mutational studies of these ligands and the T cell receptors that recognize them.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3