Affiliation:
1. Simmon's Arthritis Research Center and the Center for Immunology, University of Texas Southwestern Medical School, Dallas, TX 75235
2. Department of Pathology, University of Texas Southwestern Medical School, Dallas, TX 75235
Abstract
Genetic dissection of lupus pathogenesis in the NZM2410 strain has recently revealed that Sle1 is a potent locus that triggers the formation of IgG anti-histone/DNA antibodies, when expressed on the B6 background as a congenic interval. B6.lpr mice, in contrast, exhibit distinctly different cellular and serological phenotypes. Both strains, however, do not usually exhibit pathogenic autoantibodies, or succumb to lupus nephritis. In this study, we show that the epistatic interaction of Sle1 (in particular, Sle1/Sle1) with FASlpr leads to massive lymphosplenomegaly (with elevated numbers of activated CD4 T cells, CD4−CD8− double negative (DN) T cells, and B1a cells), high levels of IgG and IgM antinuclear (including anti-ssDNA, anti-dsDNA, and anti-histone/DNA), and antiglomerular autoantibodies, histological, and clinical evidence of glomerulonephritis, and >80% mortality by 5–6 mo of age. Whereas FASlpr functions as a recessive gene, Sle1 exhibits a gene dosage effect. These studies indicate that Sle1 and FASlpr must be impacting alternate pathways leading to lymphoproliferative autoimmunity.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献