Dissecting human T cell responses against Bordetella species.

Author:

De Magistris M T1,Romano M1,Nuti S1,Rappuoli R1,Tagliabue A1

Affiliation:

1. Lab. Immunopharmacology, Sclavo Research Center, Siena, Italy.

Abstract

To identify the minimal structures that may be important for the creation of a synthetic and/or recombinant vaccine against whooping cough, human T cell clones were obtained against Bordetella antigens. Cloned peripheral blood T lymphocytes from an immune donor were grown in IL-2 and tested for proliferation in response to inactivated Bordetella species (B. pertussis, B. parapertussis, and B. bronchiseptica) and mutants deficient for the expression of virulence-associated antigens. All the T cell clones obtained were CD4+8- and recognized specifically the Bordetella antigens when presented by autologous B cells. On the basis of the responsiveness to the whole inactivated bacteria, it was possible to cluster the 12 clones obtained into four groups with the following specificity: (1) filamentous hemagglutinin (FHA); (2) B. pertussis-specific antigens; (3) virulence-associated Bordetella-specific antigens; and (4) nonvirulence-associated Bordetella-specific antigens. Using two new B. pertussis deletion mutants, clone 6 (representative of cluster 1) was found to recognize the COOH terminus of FHA. Furthermore, three out of four clones of cluster 3 were specifically stimulated by the soluble 69-kD protein from the outer membrane of B. pertussis. Surprisingly, none of the twelve clones obtained by stimulation in vitro with whole inactivated bacteria recognized pertussis toxin (PT), which is believed to be the most important protein to be included in an acellular vaccine. However, when a new generation of clones was obtained using soluble PT as the in vitro stimulus, it was observed that 11 clones of this group recognized this antigen. Thus, PT does not seem to be the most representative antigen on the whole inactivated bacteria, although T cell memory against PT exists in a donor who had the disease several years ago.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3