The epitope associated with the binding of the capsular polysaccharide of the group B meningococcus and of Escherichia coli K1 to a human monoclonal macroglobulin, IgMNOV.

Author:

Kabat E A1,Liao J1,Osserman E F1,Gamian A1,Michon F1,Jennings H J1

Affiliation:

1. Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.

Abstract

The fine structure of the combining site of human mAb IgMNOV to poly-alpha(2----8)linked NeuNAc, the epitope of the group B meningococcal and E. coli K1 polysaccharides, has been probed using RIA and ELISA. Inhibition by oligomers ranging from 2 to 12 residues was used to assay binding to IgMNOV by group B meningococcal polysaccharide preparations (GBMP) or by poly(A). The inhibitory properties of the oligomers were almost identical in both assays of the binding of GBMP to horse IgM (H46). This evidence and the finding that both GBMP and poly(A) precipitated IgMNOV equally per unit weight indicated that the epitope of poly(A) must mimic an equivalent epitope on GBMP despite the absence of any apparent common structural features in the two molecules. Unlike most carbohydrate-anticarbohydrate systems in which the site is saturated by oligomers of up to six or seven sugars, all the anti-alpha(2----8)NeuNAc systems above required much larger oligomers. Because these oligomers are larger than the maximum size of an antibody site the epitope must be conformationally controlled, and this has been confirmed by nuclear magnetic resonance spectroscopy. However, despite the above similarities, GBMP and poly(A) were differentiated in that only GBMP bound to H46. Smaller linear molecules obtained by delipidating the GBMP, as well as periodate-oxidized GBMP with its nonreducing end oxidized or linked covalently to BSA, bound to and precipitated IgMNOV and H46. This showed that, despite their differences, terminal nonreducing ends were not involved and that both epitopes were located in the conformationally controlled inner residues of the GBMP. The difference thus must reside in the ability of IgMNOV and H46 to recognize different structural aspects of the same conformationally controlled inner residues. The ELISA data indicate that both IgMNOV and H46 have groove-type sites that bind exclusively to an epitope located on the acidic side of the inner residues. The differences determining the ability of IgMNOV and the failure of H46 to cross-react with poly(A), poly(I), and denatured DNA, may depend on differences in the degree of protonation required by each antibody, and this may be clarified by a study of the effects of pH on the precipitin behavior of IgMNOV and H46.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3