Affiliation:
1. Department of Genetics, University of California, Berkeley 94720.
Abstract
The C3HfB/HeN (C3Hf) mouse strain expresses an H-2Kk molecule, previously denoted H-2Kkv1, that is structurally and functionally distinct from H-2Kk of the parental C3H strain. By molecular genetic analysis, we demonstrate that the C3Hf H-2K gene carries a homozygous coding region mutation relative to the C3H allele, revealing that C3Hf meets the requirements for assignment of a mutant haplotype, H-2km2. C3Hf H-2Kkm2 bears a single clustered substitution of four nucleotides within 14 contiguous nucleotides in exon 3. Since this sequence also is present intact at the homologous position in H-2Dk of both C3H and C3Hf, the origin of the H-2Kkm2 mutation is consistent with a nonreciprocal sequence transfer from the H-2Dk donor gene, analogous to the mechanism proposed for generation of the H-2Kb mutations. The H-2Kkm2 mutation encodes three clustered amino acid substitutions, at positions 95, 98, and 99, that map to one of the large beta strands at the bottom of the peptide antigen binding cleft of the H-2Kkm2 molecule. The nature and location of these amino acid substitutions are unique relative to any other known H-2 mutant or HLA variant, and underscore the importance of the beta-pleated sheet in influencing CTL recognition. These results indicate that H-2Kkm2 alloantigenicity may derive largely from altered presentation of self cellular peptides.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献