Epstein-Barr virus regulates activation and processing of the third component of complement.

Author:

Mold C1,Bradt B M1,Nemerow G R1,Cooper N R1

Affiliation:

1. Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Abstract

Serum incubated with purified EBV was found to contain C3 cleavage fragments characteristic of C3c. Since the cofactors necessary for such cleavage of C3b by factor I are not normally present in serum, EBV was tested for factor I cofactor activity. Purified EBV from both human and marmoset EBV-producing cell lines was found to act as a cofactor for the factor I-mediated breakdown C3b to iC3b and iC3b to C3c and C3dg. EBV also acted as a cofactor for the factor I-mediated cleavage of C4b to iC4b and iC4b to C4c and C4d. EBV from both the human and marmoset cell lines accelerated the decay of the alternative pathway C3 convertase. The classical pathway C3 convertase was unaffected. Multiple lines of evidence eliminated the possibility that marmoset or human CR1 was responsible for the functional activities of EBV preparations. The spectrum of activities was different from CR1 in that EBV and EBV-expressing cell lines failed to rosette with C3b or particles bearing C3b, the primary functional assay for CR1, and EBV did not accelerate classical pathway C3 convertase decay, another property of CR1. In addition, CR1 could not be detected immunologically on marmoset or human EBV-expressing cells and mAbs to CR1 failed to alter EBV-produced decay acceleration and factor I cofactor activities, although the antibodies blocked the same CR1-dependent functional activities. The multiple complement regulatory activities exhibited by purified EBV derived from human and marmoset cells differ from those of any of the known C3 or C4 regulatory proteins. These various activities would be anticipated to provide survival value for the virus by subverting complement- and cell-dependent host defense mechanisms.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3