Rcan1 negatively regulates FcɛRI-mediated signaling and mast cell function

Author:

Yang Yong Jun1,Chen Wei1,Edgar Alexander1,Li Bo2,Molkentin Jeffery D.3,Berman Jason N.1,Lin Tong-Jun1

Affiliation:

1. Department of Microbiology and Immunology and Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada

2. Department of Immunology, Capital Medical University, Beijing 100069, China

3. Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229

Abstract

Aggregation of the high affinity IgE receptor (FcɛRI) activates a cascade of signaling events leading to mast cell activation. Subsequently, inhibitory signals are engaged for turning off activating signals. We identified that regulator of calcineurin (Rcan) 1 serves as a negative regulator for turning off FcɛRI-mediated mast cell activation. FcɛRI-induced Rcan1 expression was identified by suppression subtractive hybridization and verified by real-time quantitative polymerase chain reaction and Western blotting. Deficiency of Rcan1 led to increased calcineurin activity, increased nuclear factor of activated T cells and nuclear factor κB activation, increased cytokine production, and enhanced immunoglobulin E–mediated late-phase cutaneous reactions. Forced expression of Rcan1 in wild-type or Rcan1-deficient mast cells reduced FcɛRI-mediated cytokine production. Rcan1 deficiency also led to increased FcɛRI-mediated mast cell degranulation and enhanced passive cutaneous anaphylaxis. Analysis of the Rcan1 promoter identified a functional Egr1 binding site. Biochemical and genetic evidence suggested that Egr1 controls Rcan1 expression. Our results identified Rcan1 as a novel inhibitory signal in FcɛRI-induced mast cell activation and established a new link of Egr1 and Rcan1 in FcɛRI signaling.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3