A disease-related rheumatoid factor autoantibody is not tolerized in a normal mouse: implications for the origins of autoantibodies in autoimmune disease.

Author:

Hannum L G1,Ni D1,Haberman A M1,Weigert M G1,Shlomchik M J1

Affiliation:

1. Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Abstract

We have analyzed B cell tolerance in a rheumatoid factor (RF) transgenic mouse model. The model is based on AM14, a hybridoma, originally isolated from an autoimmune MRL/lpr mouse that has an affinity and specificity typical of disease-related RFs from this strain. AM14 binds to immunoglobulin (Ig)G2a of the "a" allotype (IgG2aa) and not to IgG2ab. Thus, by crossing the transgenes onto an IgHa (BALB/c) background or to a congenic IgHb (CB.17) background, we could study the RF-expressing B cells when they were self-specific (IgHa) or when they were not self-specific (IgHb). These features make the AM14 model unique in focusing on a true autoantibody specificity while at the same time allowing comparison of autoreactive and nonautoreactive transgenic B cells, as was possible in model autoantibody systems such as anti-hen egg lysozyme. Studies showed that AM14 RF B cells can make primary immune responses and do not downregulate sIgM, indicating that the presence of self-antigen does not induce anergy of these cells. In fact, IgHa AM14 transgenic mice have higher serum levels of transgene-encoded RF than their IgHb counterparts, suggesting that self-antigen-specific activation occurs even in the normal mouse background. Since AM14 B cells made primary responses, we had the opportunity to test for potential blocks to self-reactive cells entering the memory compartment. We did not find evidence of this, as AM14 B cells made secondary immune responses as well. These data demonstrate that a precursor of a disease-specific autoantibody can be present in the preimmune repertoire and functional even to the point of memory cell development of normal mice. Therefore, immunoregulatory mechanisms that normally prevent autoantibody production must exert their effects later in B cell development or through T cell tolerance. Conversely, the data suggest that it is not necessary to break central tolerance, even in an autoimmune mouse, to generate pathologic, disease-associated autoantibodies.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3