The transcription factor PU.1 is involved in macrophage proliferation.

Author:

Celada A1,Borràs F E1,Soler C1,Lloberas J1,Klemsz M1,van Beveren C1,McKercher S1,Maki R A1

Affiliation:

1. Departament de Fisiologia (Immunologia), Facultat de Biologia, Universitat de Barcelona, Spain.

Abstract

PU.1 is a tissue-specific transcription factor that is expressed in cells of the hematopoietic lineage including macrophages, granulocytes, and B lymphocytes. Bone marrow-derived macrophages transfected with an antisense PU.1 expression construct or treated with antisense oligonucleotides showed a decrease in proliferation compared with controls. In contrast, bone marrow macrophages transfected with a sense PU.1 expression construct displayed enhanced macrophage colony-stimulating factor (M-CSF)-dependent proliferation. Interestingly, there was no effect of sense or antisense constructs of PU.1 on the proliferation of the M-CSF-independent cell line, suggesting that the response was M-CSF dependent. This was further supported by the finding that macrophages transfected with a sense or an antisense PU.1 construct showed, respectively, an increased or a reduced level of surface expression of receptors for M-CSF. The enhancement of proliferation seems to be selective for PU.1, since transfections with several other members of the ets family, including ets-2 and fli-1, had no effect. Various mutants of PU.1 were also tested for their ability to affect macrophage proliferation. A reduction in macrophage proliferation was found when cells were transfected with a construct in which the DNA-binding domain of PU.1 was expressed. The PEST (proline-, glutamic acid-, serine-, and threonine-rich region) sequence of the PU.1 protein, which is an important domain for protein-protein interactions in B cells, was found to have no influence on PU.1-enhanced macrophage proliferation when an expression construct containing PU.1 minus the PEST domain was transfected into bone marrow-derived macrophages. In vivo, PU.1 is phosphorylated on several serine residues. The transfection of plasmids containing PU.1 with mutations at each of five serines showed that only positions 41 and 45 are critical for enhanced macrophage proliferation. We conclude that PU.1 is necessary for the M-CSF-dependent proliferation of macrophages. One of the proliferation-relevant targets of this transcription factor could be the M-CSF receptor.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3