Activation mediated by RP105 but not CD40 makes normal B cells susceptible to anti-IgM-induced apoptosis: a role for Fc receptor coligation.

Author:

Yamashita Y1,Miyake K1,Miura Y1,Kaneko Y1,Yagita H1,Suda T1,Nagata S1,Nomura J1,Sakaguchi N1,Kimoto M1

Affiliation:

1. Department of Immunology, Saga Medical School, Japan.

Abstract

Signals through the B cell antigen receptor lead to a variety of cellular events such as activation, anergy, and apoptosis. B cells select these outcomes to establish and maintain self-tolerance, and to mount adequate antibody responses. However, it is not fully understood how one and the same signal causes such different consequences. In the present study, we have studied the effect of activation signals on the outcome of responses to antigen receptor ligation. Two distinct growth-promoting signals were used to activate B cells. Ligation of either RP105, a newly discovered B cell surface molecule, or the CD40 molecule, drove B cells to proliferate. Resultant blastic cells were then exposed to anti-immunoglobulin M (IgM). Blast cells that had been stimulated with anti-RP105 ceased growing and underwent apoptosis after cross-linking of surface IgM. Coligation of the Fc gamma receptor IIB with surface IgM augmented, rather than aborted, this response. In contrast to RP105-activated B cells, blast cells that had been activated by CD40 ligation were unaltered by anti-IgM. On the other hand, CD40-activated B cells became extremely susceptible to Fas-mediated apoptosis, whereas RP105-activated B cells were much less sensitive. Anti-IgM-induced apoptosis in RP105 blasts was independent of Fas, because it was demonstrable with Fas-deficient MRL-lpr/lpr mice. These results demonstrate that the nature of an initial activation signal has a great influence on the fate of activated B cells after (re)engagement of the antigen receptor. RP105, as well as CD40, may be important in this life/death decision.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3