Visualization of Plasmodium falciparum–Endothelium Interactions in Human Microvasculature

Author:

Ho May1,Hickey Michael J.1,Murray Allan G.2,Andonegui Graciela1,Kubes Paul1

Affiliation:

1. Immunology Research Group, University of Calgary, Calgary, Alberta, Canada T2N 4N1

2. Division of Nephrology and Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T2N 4N1

Abstract

Plasmodium falciparum–infected erythrocytes roll on and/or adhere to CD36, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and P-selectin under shear conditions in vitro. However, the lack of an adequate animal model has made it difficult to determine whether infected erythrocytes do indeed interact in vivo in microvessels. Therefore, we made use of an established model of human skin grafted onto severe combined immunodeficient (SCID) mice to directly visualize the human microvasculature by epifluorescence intravital microscopy. In all grafts examined, infected erythrocytes were observed to roll and/or adhere in not just postcapillary venules but also in arterioles. In contrast, occlusion of capillaries by infected erythrocytes was noted only in approximately half of the experiments. Administration of an anti-CD36 antibody resulted in a rapid reduction of rolling and adhesion. More importantly, already adherent cells quickly detached. The residual rolling after anti-CD36 treatment was largely inhibited by an anti–ICAM-1 antibody. Anti–ICAM-1 alone reduced the ability of infected erythrocytes to sustain rolling and subsequent adhesion. These findings provide conclusive evidence that infected erythrocytes interact within the human microvasculature in vivo by a multistep adhesive cascade that mimics the process of leukocyte recruitment.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference21 articles.

1. Malaria;WHO Fact Sheet.,1995

2. The pathophysiology of malaria;White;Adv. Parasitol,1992

3. Plasmodium falciparum maturation abolishes physiologic red cell deformability;Cranston;Science.,1984

4. Dynamic alterations in splenic function in falciparum malaria;Looareesuwan;N. Engl. J. Med,1987

5. Molecular mechanisms of cytoadherence in malaria;Ho;Am. J. Physiol,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3