Glycosylphosphatidylinositol Anchors of Plasmodium falciparum

Author:

Naik Ramachandra S.1,Branch OraLee H.2,Woods Amina S.3,Vijaykumar Matam1,Perkins Douglas J.2,Nahlen Bernard L.24,Lal Altaf A.2,Cotter Robert J.3,Costello Catherine E.5,Ockenhouse Christian F.6,Davidson Eugene A.1,Gowda D. Channe1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007

2. Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341

3. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

4. Vector Biology and Control Center, Kenya Medical Research Institute, Kisumu, Kenya

5. Mass Spectrometry Resource, Boston University School of Medicine, Boston, Massachusetts 02118

6. Walter Reed Army Institute of Research, Silver Spring, Maryland 20910

Abstract

Induction of proinflammatory cytokine responses by glycosylphosphatidylinositols (GPIs) of intraerythrocytic Plasmodium falciparum is believed to contribute to malaria pathogenesis. In this study, we purified the GPIs of P. falciparum to homogeneity and determined their structures by biochemical degradations and mass spectrometry. The parasite GPIs differ from those of the host in that they contain palmitic (major) and myristic (minor) acids at C-2 of inositol, predominantly C18:0 and C18:1 at sn-1 and sn-2, respectively, and do not contain additional phosphoethanolamine substitution in their core glycan structures. The purified parasite GPIs can induce tumor necrosis factor α release from macrophages. We also report a new finding that adults who have resistance to clinical malaria contain high levels of persistent anti-GPI antibodies, whereas susceptible children lack or have low levels of short-lived antibody response. Individuals who were not exposed to the malaria parasite completely lack anti-GPI antibodies. Absence of a persistent anti-GPI antibody response correlated with malaria-specific anemia and fever, suggesting that anti-GPI antibodies provide protection against clinical malaria. The antibodies are mainly directed against the acylated phosphoinositol portion of GPIs. These results are likely to be valuable in studies aimed at the evaluation of chemically defined structures for toxicity versus immunogenicity with implications for the development of GPI-based therapies or vaccines.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3