Affiliation:
1. Department of Pathology, Stanford University, California 94305.
Abstract
Chromosomal translocations in lymphoid tumors frequently result from recombination between a normally rearranging antigen receptor gene and a normally non-rearranging second locus. The possibility that the lymphocyte recombinase apparatus plays a role in determining the position of breakage at the second locus has been a matter of controversy because of the inconsistent presence of heptamer-like recognition sequences adjoining breakpoints at this site. To further investigate this issue, sites of DNA recombination were analyzed in both the der(9) and der(7) products of t(7;9)(q34;q32), a recurrent translocation of human acute lymphoblastic leukemias (T-ALL). In each of three separate cases, the translocation has divided the TCR-beta locus, juxtaposing chromosome 9 DNA 5' to a J-region in the der(9) product and 3' to a D-region in the der(7) product, with variably sized N-insertions and small deletions detectable at the junctions. All three cases contain breakpoints in chromosome 9 DNA tightly clustered between two closely spaced, and oppositely oriented heptamer sequences, CAC(A/T)GTG, which perfectly match the consensus heptamer sequence recognized by the lymphocyte recombinase apparatus in normal antigen receptor gene rearrangement. In no case was there evidence of directly duplicated sequences in the two reciprocal products, as is often associated with recombination involving random staggered breakage of DNA. Taken together, these results support a mechanism for this particular translocation proceeding by recombinase-mediated breakage of both participating chromosomes.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献