Affiliation:
1. Department of Medicine, North Shore University Hospital, Manhasset, New York 11030.
Abstract
CD5-expressing B lymphocytes from patients with selected chronic lymphoproliferative disorders were used to determine whether monoclonal populations of CD5+ human B cells produce autoantibodies. CD5+ B cells from 19 patients with chronic lymphocytic leukemia (CLL) and one with diffuse well-differentiated lymphocytic lymphoma (DWDL) were cultured, with and without mitogenic stimulation, to obtain Ig from these cells. 17 of the 20 samples produced Ig in vitro. mAb from nine of the 17 patients were reactive with either IgG, ssDNA, or dsDNA. In every instance, the autoantibodies displayed monotypic L chain usage that correlated precisely with the L chain expressed on the CD5+ leukemic B cell surface. These monoclonal autoantibodies varied in their degree of antigenic specificity; some were quite specific, reacting with only one antigen, whereas others were polyspecific, reacting with two or all three autoantigens tested. Three features distinguish these autoantibodies from those observed in prior studies of CD5+ B cells. First, they are clearly the products of monoclonal populations of CD5+ cells; second, several react with dsDNA, a specificity not previously reported and often seen in association with significant autoimmune disorders; and third, two of the monoclonal autoantibodies secreted by the CD5+ clones were of the IgG class. Although not all of the Ig-producing, CD5-expressing clones elaborated mAbs reactive with the autoantigens tested, greater than 50% did. It is possible that with a broader autoantigenic panel or with larger quantities of CLL/DWDL-derived Ig, even more autoantibody-producing clones might be identified. These studies may have important implications for the antigenic specificity of subsets of human B lymphocytes as well as for lymphoproliferative and autoimmune disorders in general.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
251 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献