Peptide-specific prevention of experimental allergic encephalomyelitis. Neonatal tolerance induced to the dominant T cell determinant of myelin basic protein.

Author:

Clayton J P1,Gammon G M1,Ando D G1,Kono D H1,Hood L1,Sercarz E E1

Affiliation:

1. University of California, Department of Microbiology, Los Angeles 90024.

Abstract

Experimental allergic encephalomyelitis (EAE) is a model of antigen-specific T cell-mediated autoimmune disease. The alpha-acetylated, NH2-terminal nine amino acids (1-9NAc) of myelin basic protein (MBP) represents the dominant T cell epitope for the induction of EAE in the B10.PL (H-2u) strain. We tolerized neonatal B10.PL mice to 1-9NAc and studied the proliferative responses to this peptide and to whole MBP. Mice exposed to 1-9NAc in the neonatal period were tolerant to subsequent challenge at the proliferative T cell level. Similarly, in the 1-9NAc-tolerant group, both the incidence and severity of 1-9NAc induced EAE were greatly reduced. The fact that we were able to tolerize mice normally responsive to MBP suggests that this self antigen is sequestered (within the central nervous system) and hence tolerance to it is not normally induced. No significant difference in disease incidence was seen in response to rat MBP between control animals and 1-9NAc-tolerized mice (50% in both groups), demonstrating the presence of at least one additional encephalitogenic determinant elsewhere on the molecule. We have successfully prevented disease induction by peptide-induced tolerization. Tolerance induction by peptides provides a new and specific strategy in the prevention of autoimmunity. However, it will be clearly necessary to fully define all epitopes potentially capable of inducing pathogenic T cells to ensure complete and effective therapy of T cell-mediated autoimmune disease.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3