Structure of the human CR1 gene. Molecular basis of the structural and quantitative polymorphisms and identification of a new CR1-like allele.

Author:

Wong W W1,Cahill J M1,Rosen M D1,Kennedy C A1,Bonaccio E T1,Morris M J1,Wilson J G1,Klickstein L B1,Fearon D T1

Affiliation:

1. Department of Rheumatology and Immunology, Brigham and Women's Hospital, Boston, Massachusetts.

Abstract

Structural and quantitative polymorphisms have been described in human CR1. In the former, the S allotype is larger than the F allotype by 40-50 kD, the size of a long homologous repeat (LHR). In the latter, homozygotes for a 7.4-kb Hind III fragment express fourfold more CR1 per erythrocyte than do homozygotes for the allelic 6.9-kb restriction fragment. The basis for these genomic polymorphisms has been determined by restriction mapping the entire S allele and part of the F allele. The S allele is 158 kb and contains 5 LHRs of 20-30 kb, designated -A, -B/A, -B, -C, and -D, respectively, 5' to 3'. Extensive homology was found among the LHRs in their restriction maps, exon organization, and the coding and noncoding sequences. The presence of LHR-B/A in the S allele but not in the F allele accounts for the longer transcripts and polypeptide associated with the former allotype. At least 42 exons are present in the S allele, with distinct exons for the leader sequence, the transmembrane and cytoplasmic regions and most of the SCRs comprising the extracellular portion of CR1. Consistent with the mapping of the ligand binding site to the first two SCRs in each LHR, the second SCRs in LHR-A, -B/A, -B, and -C are encoded by two exons, reflecting a specialized function for this unit. The allelic 7.4/6.9-kb Hind III fragments extend from the 3' region of LHR-C to LHR-D. The 6.9-kb restriction fragment is the result of a new Hind III site generated by a single base change in the intron between the exons encoding the second SCR of LHR-D. A second cluster of genomic clones has been identified by hybridization to CR1 probes. Although they contain regions of hybridization to the cDNA and genomic probes derived from CR1, these cannot be overlapped with the structural gene owing to their distinct restriction maps. Three genomic polymorphisms previously identified by CR1 cDNA probes map to this region. These additional clones may represent part of a duplicated allele located nearby within the CR1 locus.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3