NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes

Author:

Freeman Leslie12,Guo Haitao1ORCID,David Clément N.1,Brickey W. June1,Jha Sushmita13,Ting Jenny P.-Y.1245ORCID

Affiliation:

1. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

2. Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

3. Indian Institute of Technology Jodhpur, Rajasthan 342011, India

4. Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

5. Department of Microbiology and Immunology, Institute of Inflammatory Diseases, Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

Abstract

Inflammation in the brain accompanies several high-impact neurological diseases including multiple sclerosis (MS), stroke, and Alzheimer’s disease. Neuroinflammation is sterile, as damage-associated molecular patterns rather than microbial pathogens elicit the response. The inflammasome, which leads to caspase-1 activation, is implicated in neuroinflammation. In this study, we reveal that lysophosphatidylcholine (LPC), a molecule associated with neurodegeneration and demyelination, elicits NLRP3 and NLRC4 inflammasome activation in microglia and astrocytes, which are central players in neuroinflammation. LPC-activated inflammasome also requires ASC (apoptotic speck containing protein with a CARD), caspase-1, cathepsin-mediated degradation, calcium mobilization, and potassium efflux but not caspase-11. To study the physiological relevance, Nlrc4−/− and Nlrp3−/− mice are studied in the cuprizone model of neuroinflammation and demyelination. Mice lacking both genes show the most pronounced reduction in astrogliosis and microglial accumulation accompanied by decreased expression of the LPC receptor G2A, whereas MS patient samples show increased G2A. These results reveal that NLRC4 and NLRP3, which normally form distinct inflammasomes, activate an LPC-induced inflammasome and are important in astrogliosis and microgliosis.

Funder

National Multiple Sclerosis Society

National Institutes of Health

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 310 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3