THE MECHANISM OF ACTIVE CEREBRAL IMMUNITY TO EQUINE ENCEPHALOMYELITIS VIRUS

Author:

Schlesinger R. Walter1

Affiliation:

1. From the Division of Infectious Diseases, The Public Health Research Institute of The City of New York, Inc.

Abstract

The fate of W.E.E. virus has been followed in the brains of mice vaccinated to such an extent that they failed to resist a large intracerebral challenge dose of a viral variant with a rapid rate of multiplication but were fully protected against a similar amount of a "slow" strain. The growth rate of the "fast" variant in vaccinated animals paralleled that in non-vaccinated ones at a slightly lower level. The "slow" strain also multiplied, but its rate of growth was depressed. Nevertheless, it persisted for 4 days at a level 100-fold higher than its initial titer. After the 4th day the virus was no longer demonstrable and was replaced by neutralizing antibody which rose so high that the serum antibody/brain antibody ratio was reduced from a "physiological" value of about 200/1 to less than 10/1. Antibody persisted in brain tissue in high titer until at least 127 days after challenge inoculation. The shift in the serum/brain ratio of neutralizing antibody was paralleled by a similar shift in the ratio of complement-fixing antibody. The neutralizing antibody in brain tissue, like that in serum, followed the "percentage law" on dilution of underneutralized mixtures. In mice immunized with small doses of vaccine, the intracerebral challenge inoculum induced a significantly greater local immune response than in those immunized to a higher degree. Mice with very low grade immunity were found more resistant to large amounts of virus than to small amounts. This "paradoxical" response to challenge was explained as due to the antigenic booster effect exerted by amounts of virus in excess of that utilized to initiate infection which were present in large inocula but absent in small doses. The broader relation of these findings to the problem of antiviral immunity has been discussed.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3