Repertoires of T cells directed against a large protein antigen, beta-galactosidase. II. Only certain T helper or T suppressor cells are relevant in particular regulatory interactions.

Author:

Krzych U,Fowler A V,Sercarz E E

Abstract

11 cyanogen bromide (CB) peptides, comprising 70% of the large protein, Escherichia coli beta-galactosidase (GZ), were studied for their ability to induce T suppressor (Ts) cells capable of strongly suppressing the in vitro anti-fluorescein (FITC) response to GZ-FITC. Only CB-2 (amino acid residues 3-92) and CB-3 (residues 93-187) were found to bear such Ts-inducing epitopes. In examining the specificity of T helper cell (Th) targets susceptible to CB-2 and CB-3-specific Ts, it appeared that only nearly Th targets could be suppressed. Thus, CB-10-primed Th were not suppressed by either Ts; even CB-3-primed Ts did not suppress CB-2-specific Th, although CB-2-specific Ts were effective. Furthermore, analysis of the suppression pattern revealed a hierarchical use of potential epitopes on native GZ in triggering functional regulatory T cells. A dominant Th epitope near the amino terminus of GZ tops a hierarchy of potential Th, most of which are never engaged. The dominant determinant seems to exist on the peptide CB-2-3 (residues 3-187), and presumably is destroyed by its cleavage at Met 92; the Th cells that it induces are suppressible by each of the Ts-inducing peptides. In the GZ system, where the native antigen is quite large, the interactions between Th and Ts are highly circumscribed. This may be attributable to the topology of antigen fragments produced during processing; any relevant fragment must bear at least a Ts- and Th-reactive determinant to permit intercellular regulation. A final implication of these results is that, not only does the existence of a Th-inducing determinant depend on its being an appropriate distance from a B cell epitope, but the existence of Ts-inducing determinants likewise depends on the existence of a neighboring Th-B cell association.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3