Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro.

Author:

Steinman R M,Kaplan G,Witmer M D,Cohn Z A

Abstract

Dendritic cells (DCs; 1) have been purified from mouse spleen in good yield. Spleen cell suspensions were floated on dense bovine plasma albumin (BPA) columns, and the low density fraction was adhered to glass (2). The adherent cells consisted of DCs and immature macrophages most of which eluted in a viable state from the culture dish after overnight incubation. The macrophages were then removed by selective rosetting with opsonized erythrocytes and recentrifugation on dense BPA. This protocol resulted in a purified DC fraction, containing 1--3 X 10(5) DCs/spleen, which was homogeneous and distinctive in its properties. All cells exhibited the phase contrast and transmission electron microscopy (EM) cytologic features that were previously described for freshly isolated adherent DCs. By scanning EM, most purified DCs exhibited a remarkable array of bulbous protrusions of varying length and shape, unlike any other lymphoid cell. All DCs expressed surface Ia and other major histocompatibility complex (MHC)-linked alloantigens. DCs, however, lacked surface Ig and T-cell antigens, and did not bind or interiorize opsonized erythrocytes. Purified DCs have been maintined in vitro for 3 days. Recovery of cultured purified cells was 70% or more of starting cell numbers. When [3H]uridine-tagged DCs were mixed with nonlabeled heterogeneous spleen cells, 70--80% of the labeled DCs were recovered as viable cells 2--3 days later. Purified DCs did not readhere to tissue culture surfaces and did not proliferate, even when cultured with mitogenic doses of concanavalin A and lipopolysaccharide. Finally, DCs did not change their cytologic or surface properties after 3 days of culture. These observations extend the evidence that DCs are a novel cell type and provide useful properties and techniques for their further study.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3