Distinct functions of monoclonal IgG antibody depend on antigen-site specificities.

Author:

Schalch W,Wright J K,Rodkey L S,Braun D G

Abstract

Intraveneous hyperimmunization of selectivity bred rabbits with streptococcal group A-variant vaccines elicits antibody responses of restricted heterogeneity at high antibody levels. All antisera contain two functionally distinct antibody populations, which can be isolated in single-band purity upon analytical isoelectric focusing. Typical examples of these two kinds of single-band antibodies were investigated in great detail for several parameters by a variety of methods. 85--99% of the streptococcal group A-variant polysaccharide (Av-CHO)-specific antibody in the antisera does not precipitate the isolated 5,000 daltons poly-L-rhamnose antigen, neither agglutinates nor lyses in the presence of complement Av-CHO-coated sheep erythrocytes (SRBC), binds the radio-labeled Av-CHO with an association constant in the ragne of 10(5)--10(6) M-1, and is of terminal specificity (nonreducing end) for the linear Av-CHO. In contrast, the minor fraction of Av-CHO-specific antibody (1--15%) does precipitate the linear Av-CHO, both agglutinates and lyses Av-CHO-coated SRBC in the presence of complement, has an affinity range of 10(8)--10(9) M-1, and is of internal specificity for the Av-CHO. The antigenic determinants of the Av-CHO for the antibodies are nonoverlapping, only one Fab of the low affinity antibody can be bound whereas four Fab of the high affinity antibody are accommodated. Hence, the determinant specificity explains the functional differences observed, for there is no indication of subclass differences. A mechanistic model of the A-variant carbohydrate presentation on the vaccine appears to account best for the unbalanced levels of low and high affinity antibody.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3