Adherence of Erythrocytes during Exflagellation of Plasmodium falciparum Microgametes Is Dependent on Erythrocyte Surface Sialic Acid and Glycophorins

Author:

Templeton Thomas J.1,Keister David B.1,Muratova Olga1,Procter Jo Lynn1,Kaslow David C.1

Affiliation:

1. From the Malaria Vaccines Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases; and the Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892

Abstract

Malaria male gametocytes within a newly ingested infected blood meal in the mosquito midgut emerge from erythrocytes and extrude approximately eight flagellar microgametes in a process termed exflagellation. In culture, and in blood removed from infected patients, emerging microgametes avidly adhere to neighboring uninfected and infected erythrocytes, as well as to emerged female macrogametes, creating “exflagellation centers”. The mechanism of erythrocyte adherence is not known nor has it been determined for what purpose microgametes may bind to erythrocytes. The proposition of a function underlying erythrocyte adherence is supported by the observation of species-specificity in adhesion: microgametes of the human malaria Plasmodium falciparum can bind human erythrocytes but not chicken erythrocytes, whereas avian host Plasmodium gallinaceum microgametes bind chicken but not human erythrocytes. In this study we developed a binding assay in which normal, enzyme-treated, variant or null erythrocytes are identified by a cell surface fluorescent label and assayed for adherence to exflagellating microgametes. Neuraminidase, trypsin or ficin treatment of human erythrocytes eliminated their ability to adhere to Plasmodium falciparum microgametes, suggesting a role of sialic acid and one or more glycophorins in the binding to a putative gamete receptor. Using nulls lacking glycophorin A [En(a−)], glycophorin B (S−s−U−) or a combination of glycophorin A and B (Mk/Mk) we showed that erythrocytes lacking glycophorin B retain the ability to bind but a lack of glycophorin A reduced adherence by exflagellating microgametes. We propose that either the sialic acid moiety of glycophorins, predominantly glycophorin A, or a more complex interaction involving the glycophorin peptide backbone, is the erythrocyte receptor for adhesion to microgametes.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3