Aplastic Anemia Rescued by Exhaustion of Cytokine-secreting CD8+ T Cells in Persistent Infection with Lymphocytic Choriomeningitis Virus

Author:

Binder Daniel11,van den Broek Maries F.1,Kägi David1,Bluethmann Horst1,Fehr Jörg1,Hengartner Hans1,Zinkernagel Rolf M.1

Affiliation:

1. From the Institute of Experimental Immunology, Department of Pathology, University Hospital of Zürich, CH-8091 Zürich, Switzerland; the Division of Hematology, Department of Internal Medicine, University Hospital of Zürich, CH-8091 Zürich, Switzerland; and the CNS Department, Pharmaceutical Research Gene Technologies, F. Hoffmann–La Roche Ltd., CH-4070 Basel, Switzerland

Abstract

Aplastic anemia may be associated with persistent viral infections that result from failure of the immune system to control virus. To evaluate the effects on hematopoiesis exerted by sustained viral replication in the presence of activated T cells, blood values and bone marrow (BM) function were analyzed in chronic infection with lymphocytic choriomeningitis virus (LCMV) in perforin-deficient (P0/0) mice. These mice exhibit a vigorous T cell response, but are unable to eliminate the virus. Within 14 d after infection, a progressive pancytopenia developed that eventually was lethal due to agranulocytosis and thrombocytopenia correlating with an increasing loss of morphologically differentiated, pluripotent, and committed progenitors in the BM. This hematopoietic disease caused by a noncytopathic chronic virus infection was prevented by depletion of CD8+, but not of CD4+, T cells and accelerated by increasing the frequency of LCMV-specific CD8+ T cells in T cell receptor (TCR) transgenic (tg) mice. LCMV and CD8+ T cells were found only transiently in the BM of infected wild-type mice. In contrast, increased numbers of CD8+ T cells and LCMV persisted at high levels in antigen-presenting cells of infected P0/0 and P0/0 × TCR tg mice. No cognate interaction between the TCR and hematopoietic progenitors presenting either LCMV-derived or self-antigens on the major histocompatibility complex was found, but damage to hematopoiesis was due to excessive secretion and action of tumor necrosis factor (TNF)/lymphotoxin (LT)-α and interferon (IFN)-γ produced by CD8+ T cells. This was studied in double-knockout mice that were genetically deficient in perforin and TNF receptor type 1. Compared with P0/0 mice, these mice had identical T cell compartments and T cell responses to LCMV, yet they survived LCMV infection and became life-long virus carriers. The numbers of hematopoietic precursors in the BM were increased compared with P0/0 mice after LCMV infection, although transient blood disease was still noticed. This residual disease activity was found to depend on IFN-γ–producing LCMV-specific T cells and the time point of hematopoietic recovery paralleled disappearance of these virus-specific, IFN-γ–producing CD8+ T cells. Thus, in the absence of IFN-γ and/or TNF/LT-α, exhaustion of virus-specific T cells was not hampered.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference62 articles.

1. Aplastic anemia: presence in human bone marrow of cells that suppress myelopoiesis;Kagan;Proc Natl Acad Sci USA,1976

2. Suppression of hematopoiesis by activated T-cells in infectious mononucleosis associated with pancytopenia;Iishi;Int J Hematol,1991

3. Aplastic anemia following infectious mononucleosis: possible immune etiology;Shadduck;Exp Hematol (NY),1979

4. The effect of cytomegalovirus on hemopoiesis: in vitro evidence for selective infection of marrow stromal cells;Apperley;Exp Hematol (NY),1989

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3