TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG

Author:

Zhang Zhi-Jun12,Guo Jian-Shuang1,Li Si-Si1,Wu Xiao-Bo1,Cao De-Li1,Jiang Bao-Chun1,Jing Peng-Bo1,Bai Xue-Qiang2,Li Chun-Hua1,Wu Zi-Han12,Lu Ying13,Gao Yong-Jing14ORCID

Affiliation:

1. Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China

2. Department of Human Anatomy, School of Medicine, Nantong University, Jiangsu, China

3. Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Jiangsu, China

4. Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China

Abstract

Toll-like receptors (TLRs) are nucleic acid–sensing receptors and have been implicated in mediating pain and itch. Here we report that Tlr8−/− mice show normal itch behaviors, but have defects in neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased TLR8 expression in small-diameter IB4+ DRG neurons. Inhibition of TLR8 in the DRG attenuated SNL-induced pain hypersensitivity. Conversely, intrathecal or intradermal injection of TLR8 agonist, VTX-2337, induced TLR8-dependent pain hypersensitivity. Mechanistically, TLR8, localizing in the endosomes and lysosomes, mediated ERK activation, inflammatory mediators’ production, and neuronal hyperexcitability after SNL. Notably, miR-21 was increased in DRG neurons after SNL. Intrathecal injection of miR-21 showed the similar effects as VTX-2337 and inhibition of miR-21 in the DRG attenuated neuropathic pain. The present study reveals a previously unknown role of TLR8 in the maintenance of neuropathic pain, suggesting that miR-21–TLR8 signaling may be potential new targets for drug development against this type of chronic pain.

Funder

National Natural Science Foundation of China

National Science Foundation of Jiangsu Province

Qing Lan Project of Jiangsu Province

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3