Human neutrophil plasminogen activator is localized in specific granules and is translocated to the cell surface by exocytosis.

Author:

Heiple J M,Ossowski L

Abstract

The subcellular localization of plasminogen activator (PA) in human neutrophils was studied. The cells were disrupted by nitrogen cavitation and fractionated on Percoll density gradients into three major components containing the plasma membranes, the specific granules, and the azurophilic granules. The biochemical markers we used to identify these organelles were alkaline phosphatase, vitamin B12-binding protein, and beta-glucuronidase, respectively. Using the radioactive fibrin plate method, PA activity and plasminogen-independent fibrinolytic activity were measured. In resting neutrophils, PA was associated mainly with the membranes of the specific granules. In five individual experiments the activity of this fraction varied from 79 to 100% of the total; the remaining activity was found to be associated with the plasma membrane, and no activity was present in the azurophilic granules. In neutrophils that were activated by exposure to PMA (20 ng/ml for 15 min at 37 degrees C), the total recoverable PA activity remained unchanged; however, the main peak of activity (85% of total) shifted from the specific granules to the plasma membranes. The magnitude of the reduction of the enzyme in the specific granules paralleled that of vitamin B12-binding protein. PMA-activated, intact neutrophils had approximately 12-fold more surface-bound PA activity than resting cells. Recovery of PA activity from neutrophils was critically dependent on pretreatment of the intact cells with DFP before cavitation; 100-fold more PA activity was detected in DFP-pretreated cells. At the same time, this pretreatment reduced the plasminogen-independent fibrinolytic activity by approximately sevenfold. We determined that PA present in the neutrophils is of the urokinase (UK) type and that the enzyme is produced and stored as a pro-UK, a form insensitive to DFP inhibition. The reduction in the level of proteases (measured as fibrinolytic activity) and the resistance of pro-UK to DFP are most likely the two major reasons for the greatly improved recovery of PA from the DFP-pretreated cells. These findings show that in resting neutrophils PA is stored in the specific granules, and that during activation, it translocates to the outer surface of the plasma membranes, thus equipping the cell with an ecto-proteolytic potential.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3