Radiation-induced, immunologically mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. Preferential elimination of suppressor T cells allows sustained production of effector T cells.

Author:

North R J

Abstract

The results of this study confirm results published by others by showing that sublethal whole-body irradiation of mice bearing immunogenic tumors can result in complete tumor regression. The results show, in addition, that irradiation-induced tumor regression can be prevented by infusion, after irradiation, of Ly-1+,2-,L3T4+ suppressor T cells from the spleens of donors bearing an established tumor, but not by infusion of normal spleen cells. This evidence, plus the demonstration that irradiation fails to cause regression of tumors growing in immunocompetent mice, is consistent with the hypothesis that irradiation-induced regression is immunologically mediated, and that it depends on the ability of irradiation to preferentially eliminate suppressor T cells. By using passive transfer assays to measure the production of effector T cells and suppressor T cells against time of tumor growth, it was shown that irradiation of tumor-bearing mice on day 5 of tumor growth resulted in a failure to generate suppressor T cells on the one hand, and in a sustained production, effector T cells on the other. In other words, irradiation prevented the concomitant antitumor immune response from being downregulated by suppressor T cells. However, giving radiation on day 1 of tumor growth, in contrast to giving it 3-6 d later, caused immunodepression and enhancement of tumor growth. This is in keeping with published evidence showing that, whereas resting effector T cells are highly radiosensitive, antigen-activated effector T cells are relatively radioresistant. It is suggested that the radioresistance of activated effector T cells, coupled with the radiosensitivity of activated suppressor T cells, is the reason for the selectivity of ionizing radiation for suppressor T cells and why a tumor needs to be palpable to undergo regression in response to radiation therapy.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3