CtIP-mediated resection is essential for viability and can operate independently of BRCA1

Author:

Polato Federica1,Callen Elsa1,Wong Nancy1,Faryabi Robert1,Bunting Samuel1,Chen Hua-Tang1,Kozak Marina1,Kruhlak Michael J.1,Reczek Colleen R.2,Lee Wen-Hwa3,Ludwig Thomas4,Baer Richard2,Feigenbaum Lionel5,Jackson Stephen667,Nussenzweig André1

Affiliation:

1. Laboratory of Genome Integrity, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892

2. Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032

3. Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697

4. Ohio State University Wexner Medical Center, Columbus, OH 43210

5. Science Applications International Corporation-Frederick National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21704

6. The Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK

7. The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK

Abstract

Homologous recombination (HR) is initiated by DNA end resection, a process in which stretches of single-strand DNA (ssDNA) are generated and used for homology search. Factors implicated in resection include nucleases MRE11, EXO1, and DNA2, which process DNA ends into 3′ ssDNA overhangs; helicases such as BLM, which unwind DNA; and other proteins such as BRCA1 and CtIP whose functions remain unclear. CDK-mediated phosphorylation of CtIP on T847 is required to promote resection, whereas CDK-dependent phosphorylation of CtIP-S327 is required for interaction with BRCA1. Here, we provide evidence that CtIP functions independently of BRCA1 in promoting DSB end resection. First, using mouse models expressing S327A or T847A mutant CtIP as a sole species, and B cells deficient in CtIP, we show that loss of the CtIP-BRCA1 interaction does not detectably affect resection, maintenance of genomic stability or viability, whereas T847 is essential for these functions. Second, although loss of 53BP1 rescues the embryonic lethality and HR defects in BRCA1-deficient mice, it does not restore viability or genome integrity in CtIP−/− mice. Third, the increased resection afforded by loss of 53BP1 and the rescue of BRCA1-deficiency depend on CtIP but not EXO1. Finally, the sensitivity of BRCA1-deficient cells to poly ADP ribose polymerase (PARP) inhibition is partially rescued by the phospho-mimicking mutant CtIP (CtIP-T847E). Thus, in contrast to BRCA1, CtIP has indispensable roles in promoting resection and embryonic development.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3