ISOLATION AND CHARACTERIZATION OF PERMEABILITY FACTORS FROM RABBIT NEUTROPHILS

Author:

Ranadive N. S.1,Cochrane C. G.1

Affiliation:

1. From the Department of Experimental Pathology, Scripps Clinic and Research Foundation, La Jolla, California 92037

Abstract

Four basic proteins that increase vascular permeability have been isolated in purified form from rabbit neutrophilic granules. These proteins are termed band 1, 2, 3, and 4 protein according to their electrophoretic migration in acrylamide gel. Molecular weights of band 1 and 2 protein derived from amino acid composition were 4800 and 5300, respectively. These values are in good agreement with those obtained for these proteins by gel diffusion techniques. The molecular weight of band 3 protein was also in the range of 5000 by the latter technique. The molecular weight of band 4 protein determined by ultracentrifugal analysis and amino acid composition was 12,000. Although all four proteins had the capacity to induce immediate increase in vascular permeability, only band 2 protein was found to release histamine from isolated rat peritoneal mast cells. Furthermore, it has been shown that the permeability-inducing activity of band 2 protein can be inhibited by pretreating rabbits with antihistamine. Band 2 protein did not release histamine from rabbit platelets and depletion of rabbit platelets from the circulation had no influence on the permeability-inducing activity of this protein. Band 1, 3, and 4 proteins did not release histamine from isolated rat peritoneal mast cells and their capacity to increase vascular permeability remained unaffected by treatment of rabbits with antihistamine. These investigations suggest that the histamine-releasing activity of band 2 protein is a specific phenomenon and is associated with particular amino acid grouping or spacial configuration of the molecules. By the same token, the increase in vascular permeability induced by the nonhistamine-releasing band 1, 3, and 4 proteins represents a specific phenomenon (or phenomena) not particularly related to the over-all charge of these molecules.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3