Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes.

Author:

Porgador A1,Gilboa E1

Affiliation:

1. Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.

Abstract

It has previously been shown that bone marrow-generated dendritic cells (DC) are potent stimulators in allogeneic mixed leukocyte reactions and are capable of activating naive CD4+ T cells in situ in an antigen-specific manner. In this study we have investigated whether bone marrow-generated DC are capable of inducing antigen-specific CD8+ T cell responses in vivo. Initial attempts to induce specific cytotoxic T lymphocyte (CTL) responses in mice injected with bone marrow-generated DC pulsed with ovalbumin (OVA) peptide were frustrated by the presence of high levels of nonspecific lytic activity, which obscured, though not completely, the presence of Ag-specific CTL. Using conditions that effectively differentiate between antigen-specific and nonspecific lytic activity, we have shown that bone marrow-generated DC pulsed with OVA peptide are potent inducers of OVA-specific CTL responses in vivo, compared with splenocytes or RMA-S cells pulsed with OVA peptide, or compared with immunization with free OVA peptide mixed with adjuvant. Antibody-mediated depletion experiments have shown that the cytotoxic effector cells consist primarily of CD8+ cells, and that induction of CTL in vivo is dependent on CD4+ as well as on CD8+ T cells. These results provide the basis for exploring the role of bone marrow-generated DC in major histocompatibility class I-restricted immune responses, and they provide the rationale for using bone marrow-generated DC in CTL-mediated immunotherapy of cancer and infectious diseases.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 335 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3