De novo expression of endothelial sialyl Lewis(a) and sialyl Lewis(x) during cardiac transplant rejection: superior capacity of a tetravalent sialyl Lewis(x) oligosaccharide in inhibiting L-selectin-dependent lymphocyte adhesion.

Author:

Turunen J P1,Majuri M L1,Seppo A1,Tiisala S1,Paavonen T1,Miyasaka M1,Lemström K1,Penttilä L1,Renkonen O1,Renkonen R1

Affiliation:

1. Haartman Institute Department of Bacteriology, University of Helsinki, Finland.

Abstract

Acute organ transplant rejection is characterized by a heavy lymphocyte infiltration. We have previously shown that alterations in the graft endothelium lead to increased lymphocyte traffic into the graft. Here, we demonstrate that lymphocytes adhere to the endothelium of rejecting cardiac transplants, but not to the endothelium of syngeneic grafts or normal hearts analyzed with the in vitro Stamper-Woodruff binding assay. Concomitant with the enhanced lymphocyte adhesion, the cardiac endothelium begins to de novo express sialyl Lewis(a) and sialyl Lewis(x) (sLea and sLex) epitopes, which have been shown to be sequences of L-selectin counterreceptors. The endothelium of allografts, but not that of syngeneic grafts or normal controls, also reacted with the L-selectin-immunoglobulin G fusion protein, giving further proof of inducible L-selectin counterreceptors. The lymphocyte adhesion to endothelium could be significantly decreased either by treating the lymphocytes with anti-L-selectin antibody HRL-1, or by treating the tissue sections with sialidase or anti-sLea or anti-sLex monoclonal antibodies. Finally, we synthetized enzymatically several members of the sLex family oligosaccharides and analyzed their ability to block lymphocyte adhesion to cardiac endothelium. The monovalent sLex (a tetramer), divalent sLex (a decamer), and tetravalent sLex (a 22-mer) could all significantly reduce lymphocyte binding, but the inhibition by the tetravalent sLex-construct was clearly superior to other members of the sLex family. The crucial control oligosaccharides, sialyl lactosamines lacking fucose but being otherwise similar to the members of sLex family, had no effect on lymphocyte binding.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3