Evolution of antibody structure during the immune response. The differentiative potential of a single B lymphocyte.

Author:

Manser T1

Affiliation:

1. Department of Biology, Princeton University, New Jersey 08544.

Abstract

Changes in the structure and function of antibodies occur during the course of an immune response due to variable (V) region gene somatic mutation and isotype switch recombination. While the end products of both these processes are now well documented, their mechanisms, timing, and regulation during clonal expansion remain unclear. Here I describe the characterization of antibodies expressed by a large number of hybridomas derived from single B cell clones at an intermediate stage of an immune response. These data provide new insights into the mechanism, relative timing, and potential of V gene mutation and isotype switching. The data suggest that somatic mutation and isotype switching are completely independent processes that may, but need not, occur simultaneously during clonal expansion. In addition, the results of this analysis demonstrate that individual B cell clones are far more efficient than previously imagined at generating and fixing particular V region somatic mutations that result in increased affinity for the eliciting epitope. Models to account for this high efficiency are discussed. Taken together with previous data, the results of this analysis also suggest that the "somatic evolution" of V region structure to a single epitope takes place in two stages; the first in which particular mutations are sustained and fixed by antigen selection in the CDR regions of the V region genes expressed in a clone over a short period of clonal expansion, and the second in which these selected CDR mutations are maintained in the growing clone, deleterious mutations are lost, and selectively neutral mutations accumulate throughout the length of V genes over long periods of clonal expansion.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3